Molecular mechanism of 1,25-dihydroxyvitamin D3 inhibition of adipogenesis in 3T3-L1 cells.
نویسندگان
چکیده
We have investigated the molecular mechanism whereby 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibits adipogenesis in vitro. 1,25(OH)2D3 blocks 3T3-L1 cell differentiation into adipocytes in a dose-dependent manner; however, the inhibition is ineffective 24-48 h after the differentiation is initiated, suggesting that 1,25(OH)2D3 inhibits only the early events of the adipogenic program. Treatment of 3T3-L1 cells with 1,25(OH)2D3 does not block the mitotic clonal expansion or C/EBPbeta induction; rather, 1,25(OH)2D3 blocks the expression of C/EBPalpha, peroxisome proliferator-activated receptor-gamma (PPARgamma), sterol regulatory element-binding protein-1, and other downstream adipocyte markers. The inhibition by 1,25(OH)2D3 is reversible, since removal of 1,25(OH)2D3 from the medium restores the adipogenic process with only a temporal delay. Interestingly, although the vitamin D receptor (VDR) protein is barely detectable in 3T3-L1 preadipocytes, its levels are dramatically increased during the early phase of adipogenesis, peaking at 4-8 h and subsiding afterward throughout the rest of the differentiation program; 1,25(OH)2D3 treatment appears to stabilize the VDR protein levels. Consistently, adenovirus-mediated overexpression of human (h) VDR in 3T3-L1 cells completely blocks the adipogenic program, confirming that VDR is inhibitory. Inhibition of adipocyte differentiation by 1,25(OH)2D3 is ameliorated by troglitazone, a specific PPARgamma antagonist; conversely, hVDR partially suppresses the transacting activity of PPARgamma but not of C/EBPbeta or C/EBPalpha. Moreover, 1,25(OH)2D3 markedly suppresses C/EBPalpha and PPARgamma mRNA levels in mouse epididymal fat tissue culture. Taken together, these data indicate that the blockade of 3T3-L1 cell differentiation by 1,25(OH)2D3 occurs at the postclonal expansion stages and involves direct suppression of C/EBPalpha and PPARgamma upregulation, antagonization of PPARgamma activity, and stabilization of the inhibitory VDR protein.
منابع مشابه
Fifty Percent Ethanolic Extract of Momordica charantia Inhibits Adipogenesis and Promotes Adipolysis in 3T3-L1 Pre-Adipocyte Cells
Background: Natural products have gained importance recently for the treatment of obesity and its complications, partly because of the side effects of modern drugs.Hence, we aimed to study and compare the effect of varying concentrations of Momordicacharantiaon adipogenesis and adipolysis using 3T3-L1 pre-adipocyte cell lines. Methods: 3T3-L1 pre-adipocytes were procured from the National Ce...
متن کاملاثر هم افزایی کاربرد توأم زهر زنبور عسل و25،1- دی هیدروکسی ویتامینD3 برالقای تمایز رده ی سلولی سرطانی پرومیلوسیتی HL-60
Introduction & Objective: Acute promyelocytic leukemia (APL) is a kind of acute leukemia characterized by a balanced t (15, 17) translocation which fails to develop into mature cells and proliferate in an unregulated fashion. In the recent years, in addition to combinatoral chemotherapy to treat unmature cancerous cells, differentiation therapy by differentiating agents as a novel procedure ...
متن کاملVitamin D decreases adipocyte lipid storage and increases NAD-SIRT1 pathway in 3T3-L1 adipocytes.
OBJECTIVE Previous studies suggest that low vitamin D status is associated with obesity characterized by excess lipid storage in adipocytes. The aim of the present study was to determine the effects of the most hormonally active form of vitamin D 1,25-dihydroxyvitamin D [1,25(OH)2D] on adipocyte fat storage and lipid metabolism in mature 3T3-L1 cells. METHODS Differentiated 3T3-L1 cells were ...
متن کامل25-Hydroxyvitamin D3 and 1,25-Dihydroxyvitamin D3 Promote the Differentiation of Human Subcutaneous Preadipocytes
1,25(OH)(2)D(3) inhibits adipogenesis in mouse 3T3-L1 adipocytes, but little is known about its effects or local metabolism in human adipose tissue. We showed that vitamin D receptor (VDR) and 1α-hydroxylase (CYP27B1), the enzyme that activates 25(OH)D(3) to 1,25(OH)(2)D(3), were expressed in human adipose tissues, primary preadipocytes and newly-differentiated adipocytes. Preadipocytes and new...
متن کامل9-cis-Retinoic Acid and 1,25-dihydroxy Vitamin D3 Improve the Differentiation of Neural Stem Cells into Oligodendrocytes through the Inhibition of the Notch and Wnt Signaling Pathways
Background: Differentiating oligodendrocyte precursor cells (OPCs) into oligodendrocytes could be improved by inhibiting signaling pathways such as Wnt and Notch. 9-cis-retinoic acid (9-cis-RA) and 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) can ameliorate oligodendrogenesis. We investigated whether they could increase oligodendrogenesis by inhibiting the Wnt and Notch signaling pathways.Methods: Co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 290 5 شماره
صفحات -
تاریخ انتشار 2006